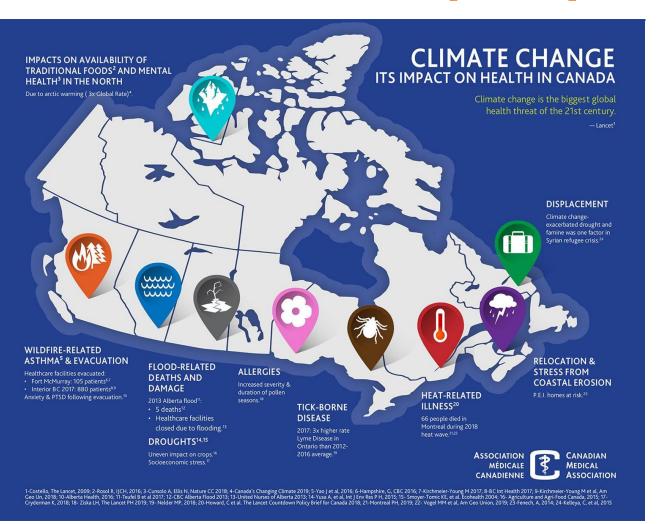
Climate, Health & Sustainable Care Inaugural Symposium

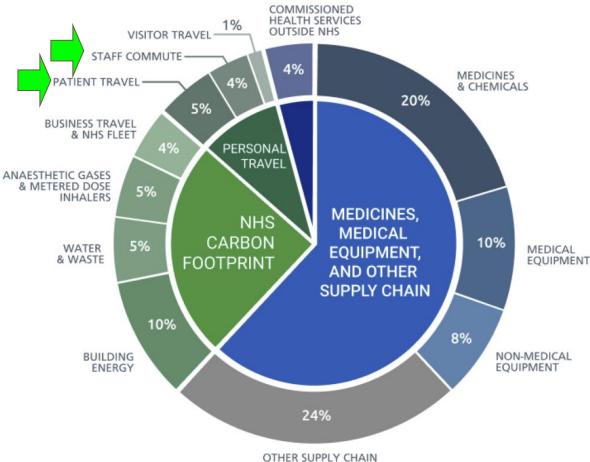
Research for Climate, Health & Sustainable Care

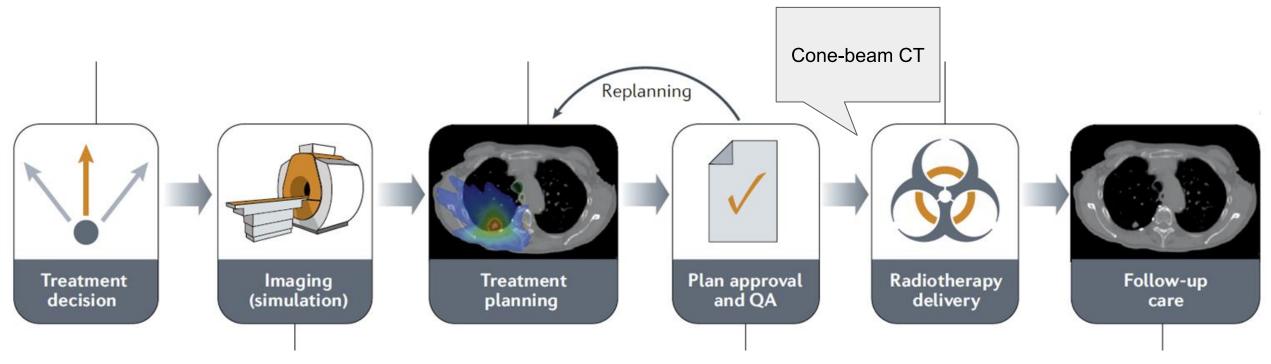
Jimin Lee, Jacques du Plessis, Jeffrey D'Souza

Moderator: Mahmood Bhutta

Climate, Health & Sustainable Care


Evaluating the Environmental Effects of Simulation-Free Radiation Therapy for Palliative Treatments


Jimin Lee, Joanna Javor, C Jillian Tsai, Bernard Cummings, Aruz Mesci, Vickie Kong, Barbara-Ann Millar, Laura Dawson, Rebecca Wong, Katherine Del poso-Lee, Amir Safavi, Daphne Jo Valmonte, Sara Mheid, Tony Tadic, Edward Taylor, Philip Wong



Healthcare CO2eq footprint is 2x Aviation

Sequence of events in radiotherapy

Many patients have diagnostic CTs prior to consultation.

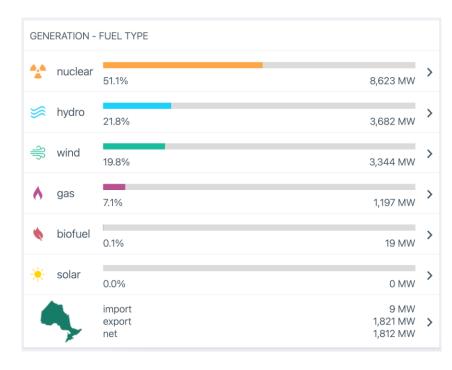
What if we substituted the CT-sim with the diagnostic CT?

How do radiation oncology treatments contribute?

1.Patient roomed

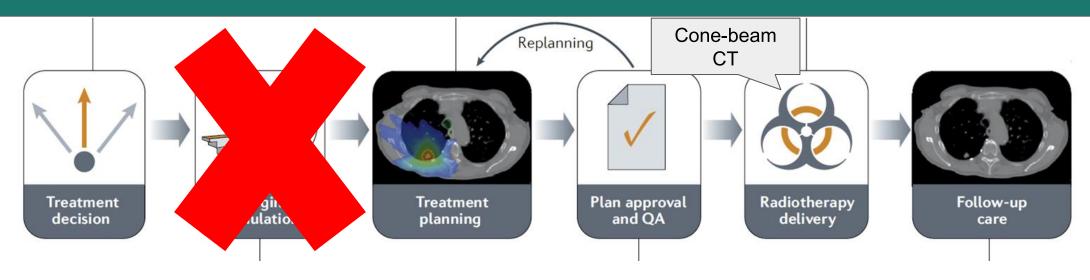
Transportation to and from hospital

2. Patient positioning


3. Simulation CT

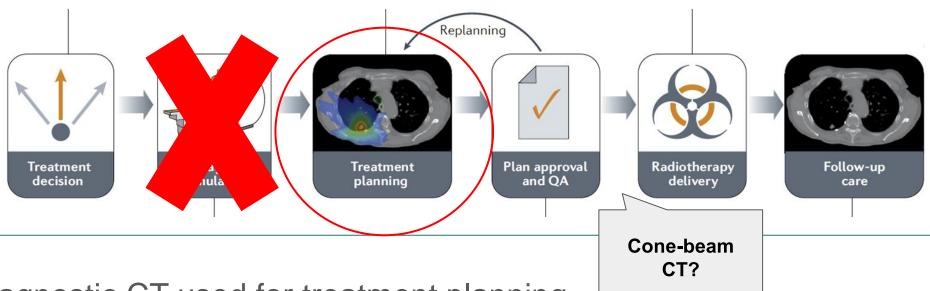
4. Treatment planning

5.Cone beam CT


6.LINAC treatment

of various machines for treatment planning and therapy

Gridwatch Webapp:


Skipping the Simulation Scan

- → Single-day palliative treatments differ from curative treatments
 - Timely treatment for symptom control is the goal, rather than preciseness!
- → Simulation scans may be unnecessary and non-contributory
- → Omitting simulation step has the potential to reduce greenhouse gas emissions by:
 - Reducing number of trips to hospital
 - Energy savings from simulation CT scanners

Simulation CT-Free Workflow

- Diagnostic CT used for treatment planning
- Cone beam CTs further leveraged to match and confirm patient positioning in real-time before treatment
 - Cone beam CTs taken as needed (up to 3 tries)

Aim

Assess the environmental impact of **simulation- free treatment workflow** for patients undergoing palliative radiotherapy treatments

- → Calculate greenhouse gas emissions from simulation-free treatment workflow
- → **Compare** treatment with control group

Patient Selection

Eligibility:

- Able to tolerate lying flat for 45 minutes
- Planned to receive a single palliative radiation fraction
- Had a diagnostic CT within the past four weeks
- **Patients requiring target motion management or radiation immobilization devices were excluded
- → **16 treatments** of simulation CT-free palliative radiation workflow between December 2023 to June 2024 included

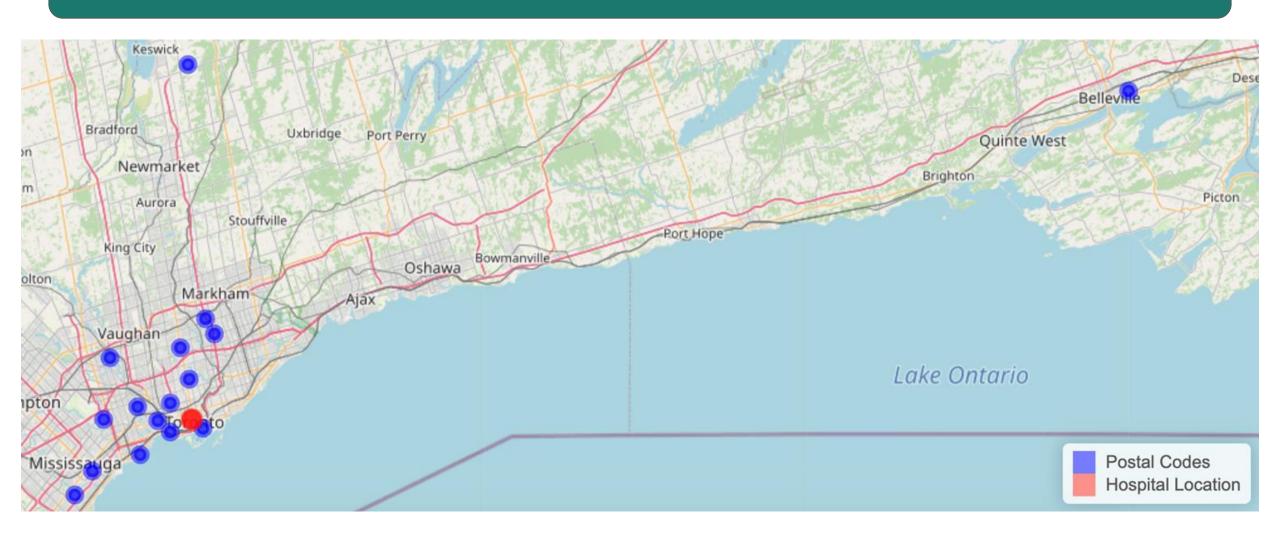
Control Patients

Eligibility:

- Underwent the traditional simulation CT workflow
- Receive a single palliative dose of radiation
 - Controlled for treatment site (sitematched with simulation-free patients)
- → 16 treatments of conventional palliative radiation workflow between April 2021 to March 2022 included

Treatment sites:

- 1 Sacrum left
- 2 LS spine
- 1 SBRT sternum
- 1 Tibia left
- 1 Scapula left
- 7 Pelvis
- 1 Back
- 1 Liver
- 1 Abdomen


Carbon Emissions Calculation

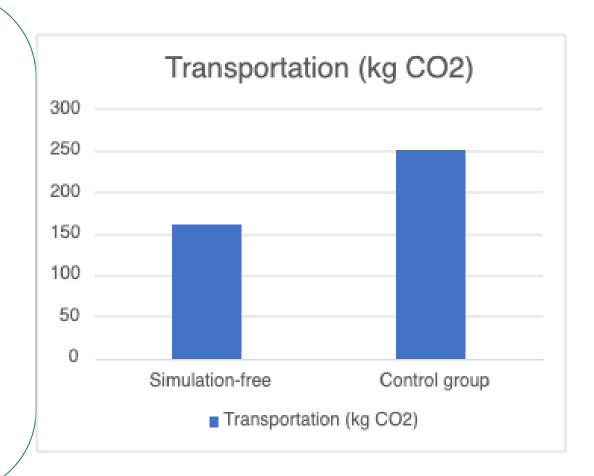
	Calculation method	Assumptions
Transportation	(Distance from home) x (Average CO2e of common vehicles)	All patients travel using personal vehicles Patients travel by the shortest route to and from hospital
Simulation CT	(kWh of scan) x (intensity of Ontario's electricity GridWatch)	Energy consumption of scan is estimated to the nearest radiological scan type, based on a published paper
Cone beam CT	(kWh of scan) x (intensity of Ontario's electricity GridWatch) **ON state of Varian cone beam CT is indistinguishable from baseline power fluctuations	Energy usage based on manufacturer's supplied data
LINAC idle time and treatment	(Machine units from treatment converted to kWh) x (intensity of Ontario's electricity GridWatch)	Energy usage based on manufacturer's supplied data

Heye T, Knoerl R, Wehrle T, et al. (2020)


Results

Simulation-Free Distances

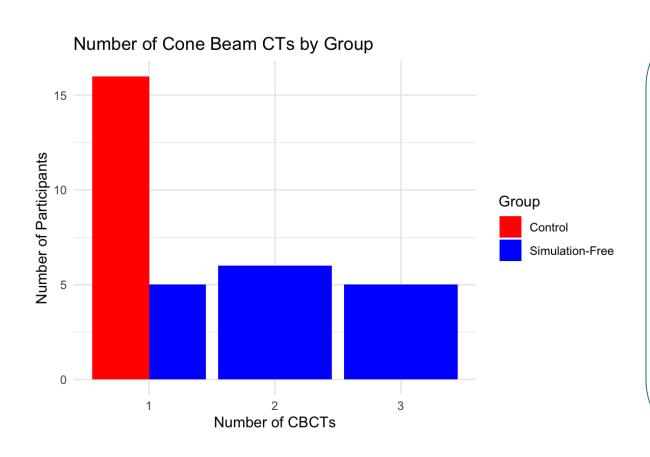
Mean distance: 15.4 km; Total: 404 km


Control Distances

Mean distance: 21.6 km; Total: 306 km

Transportation

- Thirteen control patients made an additional trip to hospital for simulation CT prior to treatment
 - Three patients had simulation CT taken same day as treatment
- ~35.28% less CO2 emissions in simulation-free treatment group
 - Sim-free 162.2268 kg CO2
 - Control 250.614 kg CO2

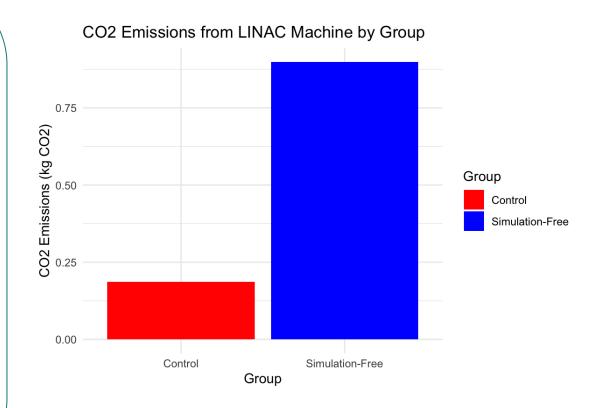


Simulation CT

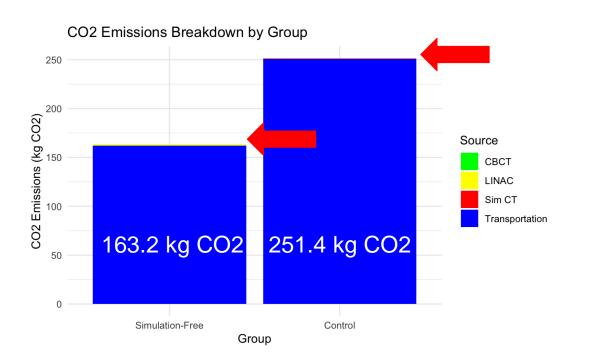
- Control group patients underwent simulation CT
 - Additional 0.594 kg CO2 emitted
 - Calculated using estimated CO2
 emissions for various imaging protocols
 from Heye, Knoerl, Wehrle, and
 colleagues (2020)

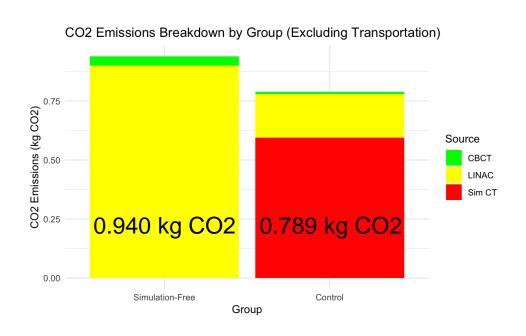
Area scanned approximated to radiology scan regions	#
Abdomen-pelvis	1
Neck-chest-abdomen-pelvis	3
Chest-abdomen-pelvis	4
Extremities	1
Chest	2
Pelvis	5

Cone Beam CT



 Simulation-free patients underwent more cone beam CTs than control patients


Linear Accelerator


Machine units:

- Simulation-free: 35747.08 MUs
- Control: 16741.30 MUs

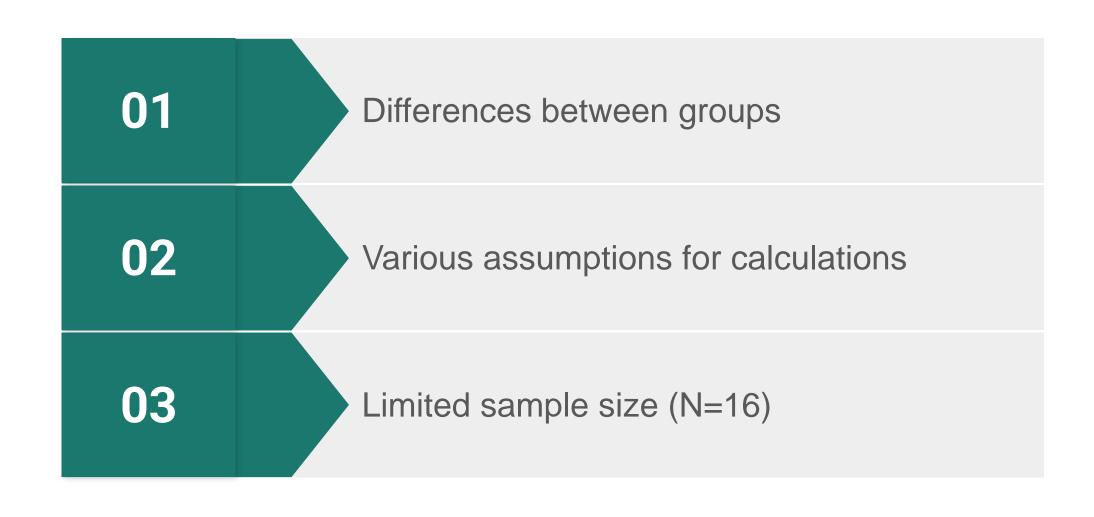
Overall Environmental Impact of Each Workflow

- Simulation-free group produces less CO2 emissions than control group
- Transportation makes up the majority of the carbon dioxide production
 - If we exclude transportation, simulation-free workflow produces slightly more CO2 than control

Conclusion

- Omitting simulation CT resulted in more cone beam CTs
 - Energy consumption from cone beam CTs is relatively small
 - However, simulation-free workflow takes longer with unpredictable amount of time due to repeat imaging and positioning
- Simulation-free treatment workflow is an effective method of reducing carbon dioxide production for eligible patients
 - Transportation is the greatest contributor to carbon dioxide emissions!

Other Points for Discussion


Same-day simulation CT and radiation treatment appointments

- Patients often wait a long time between the appointments, which makes the experience inconvenient for them
- Requires sufficient planning team resources for same-day radiation plan creation and verification
- Certain treatments (ex: SBRT) cannot be completed same day due to extensive dose calculation, will likely be limited to simple 8 in 1 treatments

Patient comfort and ability to tolerate treatments

• Simulation CTs allow us to test whether patient can remain in certain position reliably for treatment

Limitations

UNIVERSITY OF TORONTO

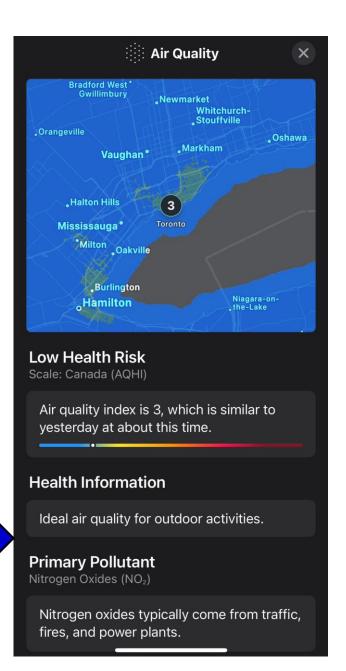
Association between Long-Term Ambient Air Pollution and Myocardial Fibrosis Assessed by MRI

Jacques du Plessis MD, Chloe DesRoche MD MSc, Scott Delaney ScD JD MPH, Rachel C. Nethery PhD, Rachel Hong BSc, Paaladinesh Thavendiranathan MD SM, Heather Ross MD MHSc, Kate Hanneman MD MPH

Financial Disclosures

 Neither of the authors have a financial relationship with a commercial organization that may have a direct or indirect interest in the content

Toronto 12° | Mostly Sunny


10-DAY FORECAST

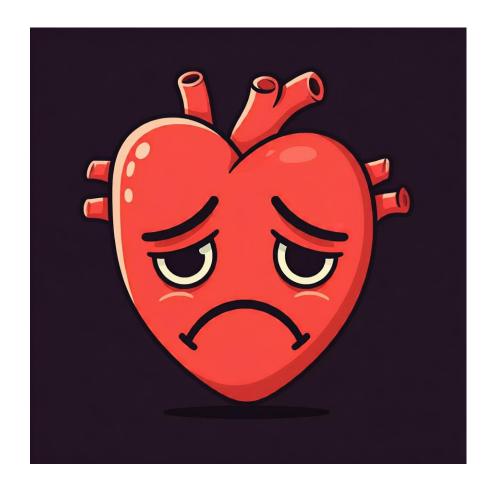
Wed	△	7° —	13°
Thu	△	5° ——	15°
Fri	*	7°	19°
Sat	*	8° ——	18°
Sun		12° —	- 22°

AIR QUALITY

3 Low Health Risk

Air quality index is 3, which is similar to yesterday at about this time.

- Air pollution is a leading environmental health hazard contributing to excess in morbidity and mortality
- In 2019, 99% of the world's population lived in places where the WHO air quality guidelines were not met
- Health damages associated with air pollution are estimated at US\$8.1 trillion



- Fine particulate matter with ≤2.5 µm aerodynamic diameter (PM_{2.5}) is the most studied component of air pollution and is associated with cardiovascular disease
- 31% of cardiovascular disease is related to environmental factors, of which air pollution is regarded as the most important

- Animal studies and autopsy data suggest that myocardial fibrosis could mediate the adverse cardiovascular effects of air pollution
- Myocardial fibrosis is associated with adverse outcomes and can precede development of heart failure
- Can be assessed non-invasively using cardiac MRI

- Long-term air pollution is associated with ventricular remodeling in patients without CVD
- Myocardial fibrosis could explain some of the variability in heart failure progression, which is not explained by traditional risk factors

Purpose

 To evaluate the relationship between longterm exposure to ambient PM_{2.5} and and the extent of myocardial fibrosis in patients with cardiovascular disease

Methods

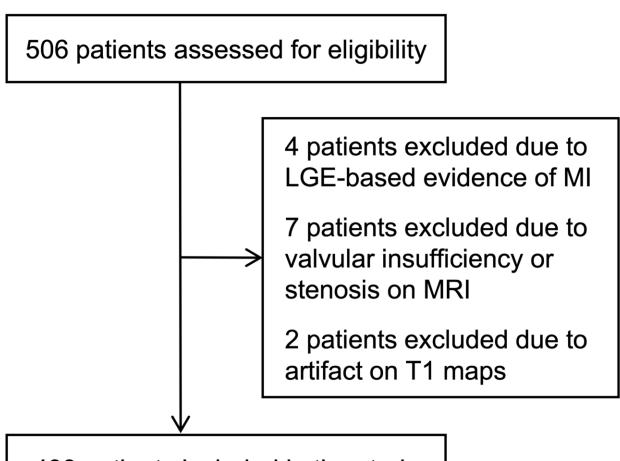
- Single-center retrospective cohort study
- Inclusion: Patient with dilated cardiomyopathy (DCM) referred for CMR between 2018–2022 with clinical follow-up
- Exclusion: Prior myocardial infarction and severe valve disease

Methods

- Primary outcome: Cardiac MRI native T1 z-score (marker of diffuse myocardial fibrosis)
- Secondary outcomes:
 - Late gadolinium enhancement (replacement fibrosis)
 - Left ventricular ejection fraction (LVEF)
 - Left ventricular end-diastolic volume
 - Native T2 z-score (marker of edema)

Methods

 Exposure: One-year mean concentration of daily ambient PM_{2.5} (μg/m³) from the closet monitoring station to each patient's residential address prior to cardiac MRI



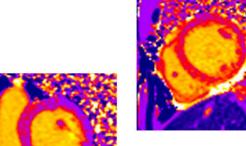
Methods

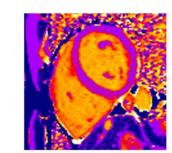
- Linear and logistic regression models
- Adjusted for: age, sex (sex assigned at birth), body surface area, local ambient temperature, distance to nearest monitoring station, urban versus rural residence location, MRI field strength, year, cardiac risk factors and socioeconomic status

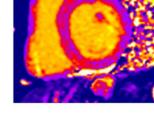
Results

Median one-year $PM_{2.5} = 7.8 \mu g/m^3$ (IQR 7.4, 8.1)

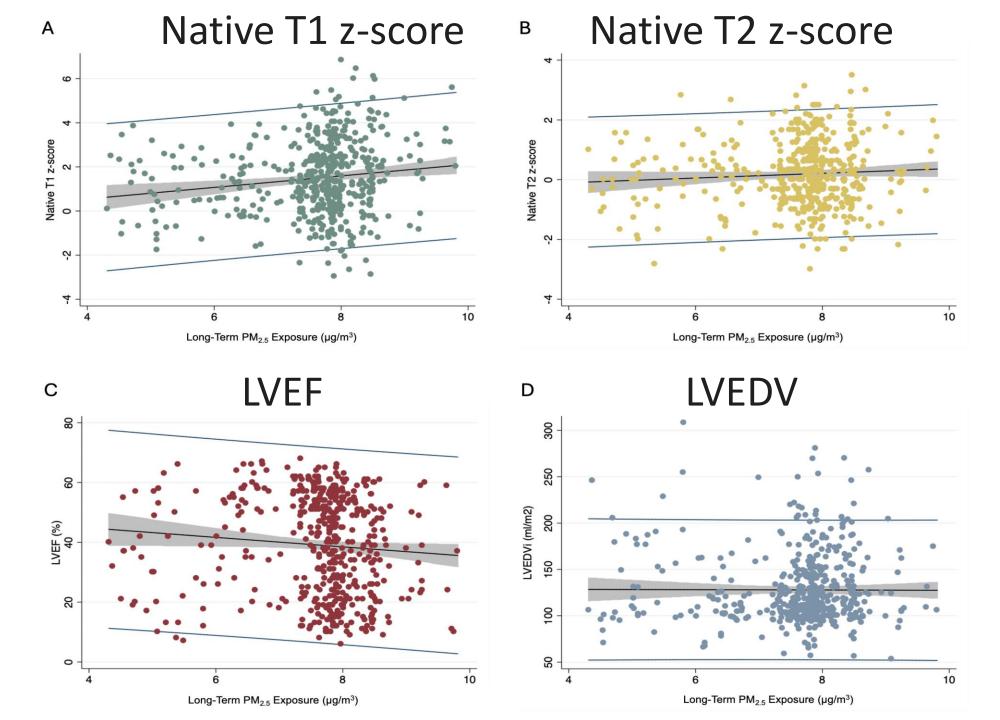
493 patients included in the study


	All Patients	Low PM _{2.5}	Medium	High PM _{2.5}	p-
	n=493	Tertile (4.3-7.6 μg/m³) n=165	PM _{2.5} Tertile (7.6- 8.0 μg/m³) n=164	Tertile (8.0- 9.8 μg/m³) n=164	value
Age, year ^a	48 ± 16	46 ± 15	48 ± 17	50 ± 16	.09
Male (%)	350 (71)	120 (73)	116 (71)	114 (70)	.52
Female (%)	143 (29)	45 (27)	48 (29)	50 (30)	.52
Height, cm ^a	174 ± 15	175 ± 10	174 ± 21	174 ± 10	.57
Weight, kg ^a	82 ± 20	82 ± 19	81 ± 22	81 ± 20	.41
BSA, m ^{2 a}	1.98 ± 0.27	2.00 ± 0.26	1.97 ± 0.28	1.97 ± 0.27	.32
Distance to nearest station (km) b	6.6 (3.5, 9.9)	6.6 (3.5, 14.1)	6.7 (4.1, 8.4)	6.3 (3.5, 9.5)	.19
Urban residence (%)	450 (91)	139 (84)	158 (96)	153 (93)	.004
Hypertension (%)	148 (30)	44 (27)	53 (32)	51 (31)	.38
Hyperlipidemia (%)	86 (17)	26 (16)	31 (19)	29 (18)	.65
Smoking history (%)	105 (21)	39 (24)	38 (23)	28 (17)	.15
Diabetes (%)	55 (11)	14 (8)	22 (13)	19 (12)	.37
Neighborhood median annual	42,400	42,400	40,400	43,600	.27
household income (\$)b	(36,800,	(36,800,	(35,200,	(37,200,	
	51,200)	48,800)	51,800)	52,000)	
Neighborhood education level (diploma or higher) (%)	73 ± 11	72 ± 12	73 ± 11	73 ± 11	.17

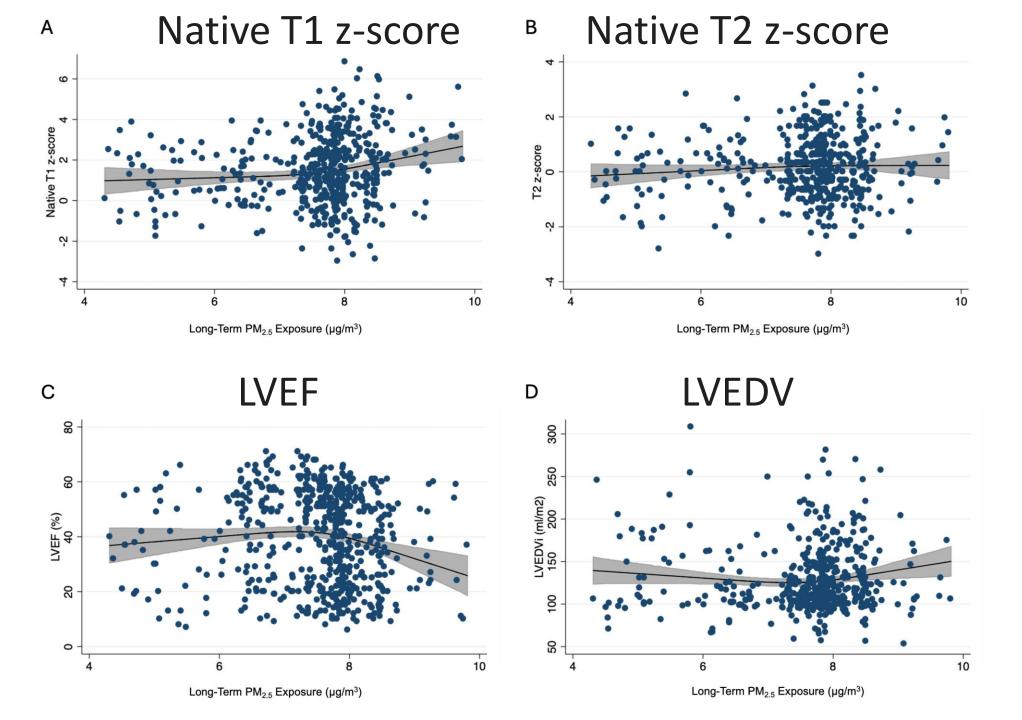

Results


Cardiac MRI Findings by Tertiles of One-Year Mean PM_{2.5} Exposure

	All Patients n=493	Low PM _{2.5} Tertile (4.3-7.6 μg/m³) n=165	Medium PM _{2.5} Tertile (7.6-8.0 μg/m³) n=164	High PM _{2.5} Tertile (8.0-9.8 μg/m³) n=164	p-value
Native T1 z-score	1.4 (0.4, 2.5)	1.1 (0.1, 2.2)	1.4 (0.4, 2.5)	1.7 (0.5, 3.1)	.005
T2 z-score	0.2 (-0.6, 0.9)	0.1 (-0.6, 0.7)	0.3 (-0.6, 1.0)	0.0 (-0.7, 0.8)	.85
LVEDVI, ml/m ²	116 (103, 146)	111 (102, 138)	116 (105, 144)	122 (105, 152)	.01
LVEF, %	40 (24, 54)	49 (28, 57)	41 (25, 54)	35 (21, 51)	.001
LGE presence (%) ^{a,b}	322 (67)	92 (58)	112 (70)	118 (72)	.005



In fully adjusted multivariable model, one-year ambient $PM_{2.5}$ exposure was associated with a 0.28 higher native T1 z-score per 1 $\mu g/m^3$


 $4 \mu g/m^3$ 10 $\mu g/m^3$

Fine Particulate Air Pollution (µg/m³)

	Linear Regression			Logistic Regression		
	<i>B</i> -coefficient ^a (95%CI)	P value		Odds Ratio ^b (95%CI)	P value	
UNIVARIABLE MODELS						
Native T1 z-score	0.26 (0.11, 0.42)	.001		_	-	
T2 z-score	0.08 (-0.02, 0.18)	.13		-	-	
LVEDVI, ml/m ²	1.4 (-2.4, 5.2)	.48		_	-	
LVEF, %	-1.6 (-3.1, -0.3)	.045		-	-	
LGE presence (%)	*	•		1.22 (1.02, 1.47)	.034	
MULTIVARIABLE MODELS ^c						
Native T1 z-score	0.28 (0.11, 0.45)	.001		_	-	
T2 z-score	0.05 (-0.06, 0.16)	.37		-	-	
LVEDVI, ml/m ²	2.6 (-1.4, 6.6)	.20		-	-	
LVEF, %	-1.2 (-2.8, 0.3)	.11		-	-	
LGE presence (%)	*			1.25 (1.01, 1.56)	.041	

Results

- In fully adjusted multivariable model the increase in native T1 z-score (per 1 μg/m³) were
 - 0.40 in women compared to 0.23 in men
 - 0.45 in smokers compared to 0.24 to non-smokers
 - 0.37 in hypertensive patients compared to 0.26 in non-hypertensive patients
- Adjusted effect estimates for long-term
 PM_{2.5} exposure on native T1 z-scores were similar for patients <50 and ≥50 years of age

Limitations

- Single center study
- Potential for unknown and unmeasured confounders
- No histological confirmation
- Only evaluated ambient PM_{2.5} exposure and did not account for indoor exposure or exposure to other air pollutants

Conclusion

- Higher past PM_{2.5} exposure was associated with increased native T1, a marker of diffuse myocardial fibrosis
- Myocardial fibrosis could mediate the adverse cardiovascular effects of air pollution, even at exposures below current air quality guidelines

Conclusion

- Air pollution is ubiquitous, although the risks are not equal
- Certain subgroups are more vulnerable, with a larger effect observed in women, smokers, and hypertensive patients
- Medical imaging can be used as a non-invasive tool to assess underlying mechanisms of climaterelated disease

Purpose

To evaluate the relationship between long-term air pollution exposure and myocardial fibrosis

Myocardial fibrosis

assessed by cardiac MRI T1 mapping

Higher exposure to fine particulate air pollution is associated with

Key Result

myocardial fibrosis even at low exposure levels

Implications

Ambient air pollution is a modifiable cardiovascular risk factor

Medical imaging is a non-invasive tool to investigate climate health effects

Exposure

One-year exposure to ambient fine particulate air pollution

Conducting Sustainable Health Research in the Anthropocene

Jeff D'Souza

COI

I have no conflicts of interest to declare

Disclaimers

- The views expressed in this presentation are my own and do not express the views or opinions of my employer
- Ethicist & ~ Climate Scientist

Research ethics, climate change, & human health

RESEARCH ETHICS

CLIMATE CHANGE

HUMAN HEALTH

What makes research ethical?

Favorable riskbenefit ratio

- Risks to participants are minimized;
- Potential benefits to participants and society are maximized;
- Risks/harms to
 participants are
 proportionate to the
 potential benefits to
 participants and
 society.

Citations 1,4:

Special Communication

May 24/31, 2000

What Makes Clinical Research Ethical?

Ezekiel J. Emanuel, MD, PhD; David Wendler, PhD; Christine Grady, PhD

Author Affiliations

IAMA 2000.202/201.2701.2711.doi:10.1001/2002.202.20.2701

Requirement	Explanation	Justifying Ethical Values	Expertise for Evaluation Scientific knowledge; citizen's understanding of social priorities	
Social or scientific value	Evaluation of a treatment, intervention, or theory that will improve health and well-being or increase knowledge	Scarce resources and nonexploitation		
Scientific validity	Use of accepted scientific principles and methods, including statistical techniques, to produce reliable and valid data	Scarce resources and nonexploitation	Scientific and statistical knowledge; knowledge of condition and population to assess feasibility	
Fair subject selection	Selection of subjects so that stigmatized and vulnerable individuals are not targeted for risky research and the rich and socially powerful not favored for potentially beneficial research	Justice	Scientific knowledge; ethical and legal knowledge	
Favorable risk-benefit ratio	Minimization of risks; enhancement of potential benefits; risks to the subject are proportionate to the benefits to the subject and society	Nonmaleficence, beneficence, and nonexploitation	Scientific knowledge; citizen's understanding of social values	
Independent review	Review of the design of the research trial, its proposed subject population, and risk-benefit ratio by individuals unaffiliated with the research	Public accountability; minimizing influence of potential conflicts of interest	Intellectual, financial, and otherwise independent researchers; scientific and ethical knowledge	
Informed consent	Provision of information to subjects about purpose of the research, its procedures, potential risks, benefits, and alternatives, so that the individual understands this information and can make a voluntary decision whether to enroll and continue to participate	Respect for subject autonomy	Scientific knowledge; ethical and legal knowledge	
Respect for potential and enrolled subjects	Respect for subjects by (1) permitting withdrawal from the research; (2) protecting privacy through	Respect for subject autonomy and welfare	Scientific knowledge; ethical and legal knowledge; knowledge o particular subject population	

Peculiarity: A risk-benefit fallacy?

Potential **risks** focus on the **individual**

Vs.

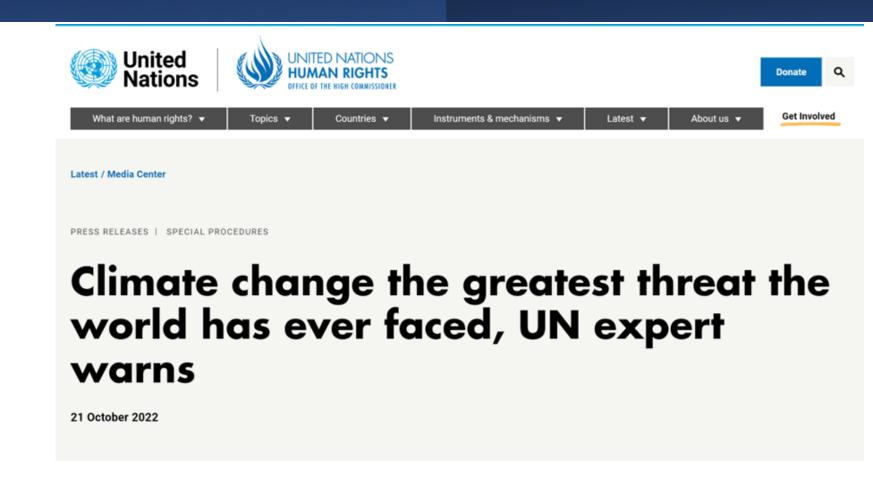
Potential **benefits** focus on **more than just the individual**

Central ethical inquiry

Do the potential harms/risks of a research study to non-participants (e.g., society, future generations, etc.) matter?

Where beneficence, we should find non-maleficence

- Insofar as we stand in moral relation to a group, we cannot arbitrarily decide what it is that we owe them
- If we have a general duty of beneficence, we have at the very least an equal duty of non-maleficence toward them


Indirect harms and risks to society matter

Such indirect risks and harms include how health interventions may:

- (1) Broaden health inequities
- (2) Exploit lands, resources, humans, and non-human animals,
- (3) Destroy natural habitats, and
- (4) Contribute to anthropogenic climate change through the carbon footprint of health research

Research ethics & climate change

Major Problem:
Ignores the greatest
threat to our
species, non-human
animals, plants,
natural ecosystems,
and our planet:
climate change

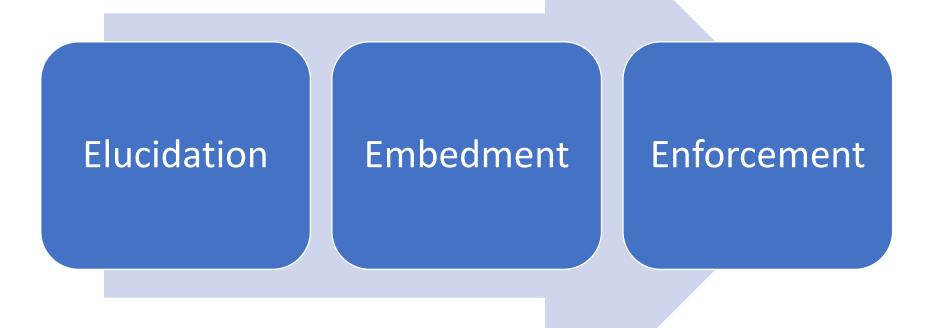
Health research not insignificant contributor

 Based on 350 000 trials on ClinicalTrials.gov. by the Sustainable Clinical Trials Group, we get an estimated 27.5 million tones of carbon emission (1/3 of the total annual carbon emissions of Bangladesh, a country of 163 million people)

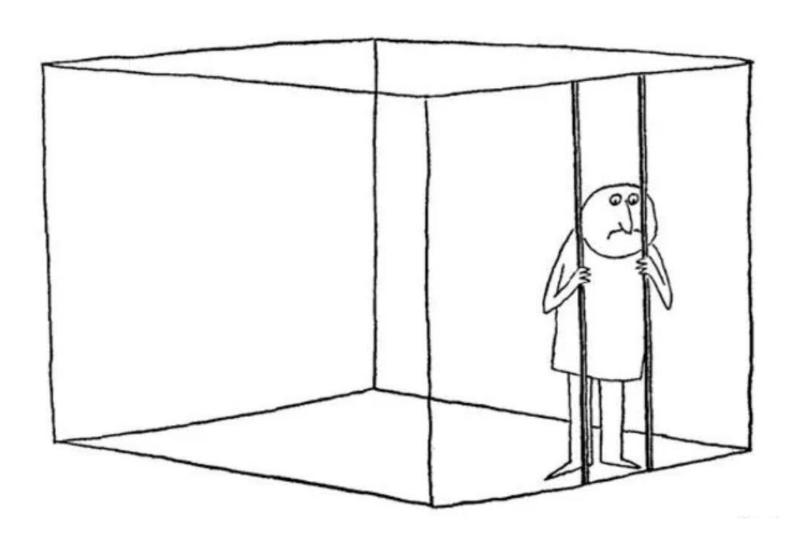
Net Neutral: a modest proposal

- 1. Calculate and disclose the associated carbon footprint of their research; &
- Develop a reduction/mitigation plan to ensure that study achieves net-zero carbon emissions

On this account, *mutatis mutandis*, research that cannot achieve net-zero carbon emissions would, *prima facie*, be deemed ethically unacceptable


Moral Justification

- How do we ground a "new requirement" Vs. making an already existent moral requirement explicit?
- Risk-benefit ratio principle
 - Respect for persons
 - Environmentalism



Principle 11: "Medical research should be conducted in a manner that that avoids or minimizes possible harm to the environment [and strives for environmental sustainability]"

Elucidation, Embedment & Enforcement

Barrier?

Informative Vs. Uninformative Research

"As the system encourages poor research it is the system that should be changed. We need less research, better research, and research done for the right reasons" (Altman, 1994)

This Issue Views 26,820 | Citations 42 | Altmetric 346 | Comments 1

Viewpoint

July 25, 2019

Harms From Uninformative Clinical Trials

Deborah A. Zarin, MD¹; Steven N. Goodman, MD, MHS, PhD²; Jonathan Kimmelman, PhD³

Author Affiliations

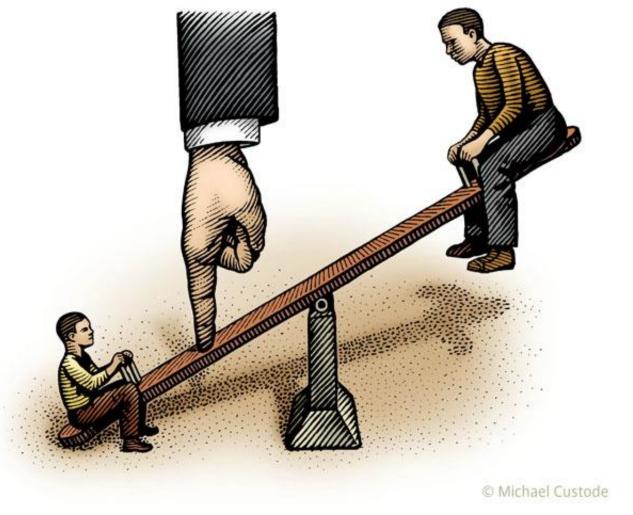
JAMA. 2019;322(9):813-814. doi:10.1001/jama.2019.9892

Individuals who enroll in clinical trials do so with the belief that their participation will help to advance medical science. However, many trials are designed, conducted, and reported in ways that stymie this objective, a problem that can be called "uninformativeness." From the perspective of rese a form of research inefficiency. But from the perspective of participants, preventable uniness is a serious breach of trust and a violation of research ethics.

GATES freedation

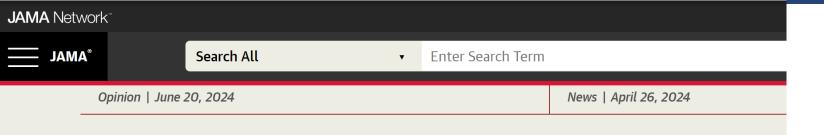
About us
Our work
Ideas
Search Q

"Uninformative research" is the global health crisis you've never heard of


To put it bluntly: Three out of four [U.S. clinical trials] were a waste of time and money.

Research Industrial complex? Perverse research motivations?

• More is better?



"We are stealing from the future, selling it to the present, and calling it GDP"-Paul Hawken

Do your part!

We need researchers, funders, sponsors and the research industrial complex to do their fair share with respect to their carbon footprint

D'Souza & Samuel (2023)

Viewpoint | Climate Change and Health

November 27, 2023

Clinical Research Risks, Climate Change, and Human Health

Jeff D'Souza, PhD^{1,2}; Gabrielle Samuel, PhD³

Author Affiliations

JAMA. 2023;330(23):2247-2248. doi:10.1001/jama.2023.23724

Chapter 13: "Have We Been Miscalculating the Potential Benefits and Risks of Research All Along?: A Closer Look at the Interconnectedness of Research Ethics, Climate Change & Global Health" in Handbook of Environmental Bioethics, Oxford University Press, (2025)

Summary

- (1) We need to revise how we calculate the risks and benefits of health research to include those indirect harms related to climate change
- (2) We should advocate for change across the research ethics ecosystem
- (3) We need to do so in a fair and just way that does not exacerbate existing health inequities & opportunities

Thank you

Please provide feedback to inform future events

If you're heading out early,
Please fill out the
Symposium Evaluation Survey

